from math import tan, radians

from pygame import Surface
from pygame.draw import line

from lib.pgfw.pgfw.GameChild import GameChild

class Mask(GameChild, Surface):

    def __init__(self, parent):
        GameChild.__init__(self, parent)
        self.display_surface = self.get_display_surface()
        self.load_configuration()
        self.init_surface()
        self.set_background()
        self.reset()

    def load_configuration(self):
        config = self.get_configuration("land")
        self.height = config["height"]
        self.spacing_factor = config["spacing-factor"]
        self.gradient = config["gradient"]
        self.x_step = config["x-step"]
        self.velocity_ratio = config["velocity-ratio"]

    def init_surface(self):
        Surface.__init__(self, (self.get_display_surface().get_width(),
                                self.height))

    def set_background(self):
        background = Surface(self.get_size())
        background.fill((0, 0, 0))
        self.background = background

    def reset(self):
        self.x_offset = 0

    def update(self):
        self.clear()
        self.draw_y()
        self.draw_x()

    def clear(self):
        self.blit(self.background, (0, 0))

    def draw_y(self):
        yy = 0
        ii = 0
        rect = self.get_rect()
        while yy < rect.bottom:
            line(self, (255, 255, 255), (0, yy), (rect.right, yy))
            yy += int(self.spacing_factor ** ii)
            ii += 1

    def draw_x(self):
        gradient = self.gradient
        step = self.x_step
        rect = self.get_rect()
        edge = rect.right
        xx = int(self.x_offset) + step
        adjacent = rect.h
        while xx < edge:
            angle = (edge - float(xx)) / edge * 2 * gradient + (90 - gradient)
            opposite = int(tan(radians(90 - angle)) * adjacent)
            line(self, (255, 255, 255), (xx, 0),
                 (xx + opposite, adjacent))
            xx += step
        self.decrement_x_offset()

    def decrement_x_offset(self):
        self.x_offset -= self.parent.parent.velocity[0] * self.velocity_ratio
        if self.x_offset <= -self.x_step:
            self.x_offset += self.x_step
from random import randrange, randint
from os.path import join

from pygame import PixelArray

from lib.pgfw.pgfw.Sprite import Sprite
from food_spring.level.planet.moon.Moons import Moons

class Planet(Sprite):

    def __init__(self, parent):
        Sprite.__init__(self, parent)
        self.load_configuration()
        self.load_image()
        self.place()
        self.register(self.scramble, interval=self.interval)
        self.play(self.scramble)
        self.moons = Moons(self)

    def load_configuration(self):
        config = self.get_configuration("planet")
        self.root = config["path"]
        self.interval = config["interval"]
        self.shifts = config["shifts"]
        self.offset = config["offset"]
        self.extension = config["extension"]

    def load_image(self):
        path = self.get_resource(join(self.root, "%i.%s" % (self.parent.index,
                                                            self.extension)))
        self.load_from_path(path, True)

    def place(self):
        self.rect.center = self.display_surface.get_width() / 2, \
                           self.parent.land.top - self.offset

    def scramble(self):
        surface = self.get_current_frame()
        pixels = PixelArray(surface)
        width, height = self.location.size
        x = randrange(0, width)
        y = randrange(0, height)
        components = surface.unmap_rgb(pixels[x][y])
        if components[3] == 255:
            for _ in xrange(self.shifts):
                dx, dy = randint(-1, 1), randint(-1, 1)
                nx, ny = x + dx, y + dy
                if nx < 0 or ny < 0 or nx >= width or ny >= height:
                    break
                if surface.unmap_rgb(pixels[nx][ny])[3] == 255:
                    pixels[nx][ny] = components
                    x = nx
                    y = ny
        del pixels

    def update(self):
        Sprite.update(self)
        self.moons.update()
from random import randint

from lib.pgfw.pgfw.GameChild import GameChild
from food_spring.level.planet.moon.Moon import Moon

class Moons(GameChild, list):

    def __init__(self, parent):
        GameChild.__init__(self, parent)
        for _ in xrange(randint(*self.get_configuration("moon", "count"))):
            self.append(Moon(self))

    def update(self):
        for moon in self:
            moon.update()
from random import randint, randrange
from glob import glob
from os.path import join

from pygame import Color, PixelArray

from lib.pgfw.pgfw.Sprite import Sprite

class Moon(Sprite):

    def __init__(self, parent):
        Sprite.__init__(self, parent)
        self.load_configuration()
        self.set_frames()
        self.tint()
        self.place()
        self.set_framerate(randint(*self.interval))
        self.frame_index = randrange(0, len(self.frames))

    def load_configuration(self):
        config = self.get_configuration("moon")
        self.tint_level = config["tint-level"]
        self.interval = config["interval"]
        self.margin = config["margin"]
        self.path = self.get_resource(config["path"])

    def set_frames(self):
        for path in glob(join(self.path, "*.png")):
            self.load_from_path(path, True, True)

    def tint(self):
        color = Color(0, 0, 0)
        color.hsla = randint(0, 360), 100, 50
        level = self.tint_level
        transparent_color = self.get_current_frame().get_colorkey()
        for frame in self.frames:
            pixels = PixelArray(frame)
            for x in xrange(len(pixels)):
                for y in xrange(len(pixels[x])):
                    if pixels[x][y] != transparent_color:
                        r, g, b, a = frame.unmap_rgb(pixels[x][y])
                        r = self.tint_component(r, color.r)
                        g = self.tint_component(g, color.g)
                        b = self.tint_component(b, color.b)
                        pixels[x][y] = r, g, b, a

    def tint_component(self, component, tint):
        return self.tint_level * (tint - component) + component

    def place(self):
        margin = self.margin
        box = self.parent.parent.location.inflate([margin] * 2)
        moons = [moon.location.inflate([margin] * 2) for moon in self.parent]
        self.set_center()
        location = self.location
        while location.colliderect(box) or location.collidelist(moons) != -1:
            self.set_center()

    def set_center(self):
        display = self.display_surface.get_rect()
        margin = self.margin
        x = randrange(margin, display.w - margin)
        y = randrange(margin, self.parent.parent.parent.land.top - margin)
        self.location.center = x, y
18.205.56.209
18.205.56.209
18.205.56.209
 
December 3, 2013

Where in the mind's prism does light shine, inward, outward, or backward, and where in a plane does it intersect, experientially and literally, while possessing itself in a dripping wet phantasm?


Fig 1.1 What happens after you turn on a video game and before it appears?

The taxonomy of fun contains the difference between gasps of desperation and exaltation, simultaneously identical and opposite; one inspires you to have sex, while the other to ejaculate perpetually. A destruction and its procession are effervescent, while free play is an inseminated shimmer hatching inside you. Unlikely to be resolved, however, in such a way, are the climaxes of transitions between isolated, consecutive game states.

You walk through a door or long-jump face first (your face, not Mario's) into a painting. A moment passes for eternity, viscerally fading from your ego, corpus, chakra, gaia, the basis of your soul. It happens when you kill too, and especially when you precisely maim or obliterate something. It's a reason to live, a replicating stasis.


Fig 1.2 Sequence in a video game

Video games are death reanimated. You recurse through the underworld toward an illusion. Everything in a decision and logic attaches permanently to your fingerprint. At the core, you use its energy to soar, comatose, back into the biosphere, possibly because the formal structure of a mind by human standards is useful in the next world.