from pygame.time import get_ticks

from lib.pgfw.pgfw.GameChild import GameChild

class Timer(GameChild):

    def __init__(self, parent):
        GameChild.__init__(self, parent)
        self.reset()
        self.limit = 300000

    def reset(self):
        self.elapsed = 0
        self.stop()

    def start(self):
        self.running = True
        self.last_ticks = get_ticks()

    def stop(self):
        self.running = False

    def get_remaining(self):
        return self.limit - self.elapsed

    def get_ratio_remaining(self):
        return float(self.get_remaining()) / self.limit

    def update(self):
        if self.running:
            ticks = get_ticks()
            self.elapsed += ticks - self.last_ticks
            self.last_ticks = ticks
            if self.elapsed >= self.limit:
                self.reset()
from pygame import Surface
from pygame.font import Font
from pygame.draw import line
from pygame.locals import *

from lib.pgfw.pgfw.Game import Game
from food_spring.Types import Types
from food_spring.gaia.Gaia import Gaia
from food_spring.Spanky import Spanky
from food_spring.introduction.Introduction import Introduction
from food_spring.Timer import Timer
from food_spring.title.Title import Title
from food_spring.level.Levels import Levels
from food_spring.home.Home import Home
from food_spring.Siphon import Siphon
from food_spring.gun.GunLibrary import GunLibrary

class FoodSpring(Game):

    def __init__(self):
        Game.__init__(self, type_declarations=Types())
        if self.check_command_line("-mute"):
            self.audio.mute()
        self.input.register_any_press_ignore(keys=[K_LALT, K_RALT, K_F4])
        self.activate()
        self.subscribe(self.respond)

    def respond(self, event):
        if self.delegate.compare(event, "reset-game"):
            for child in (self.home, self.timer):
                self.call("deactivate", child)
                self.call("reset", child)
            self.activate()

    def call(self, method, obj):
        if hasattr(obj, method):
            attribute = getattr(obj, method)
            if callable(attribute):
                attribute()

    def activate(self):
        self.home.activate()

    def set_children(self):
        Game.set_children(self)
        self.gaia = Gaia(self)
        self.spanky = Spanky(self)
        self.timer = Timer(self)
        self.gun_library = GunLibrary(self)
        self.siphon = Siphon(self)
        self.levels = Levels(self)
        self.home = Home(self)

    def update(self):
        self.timer.update()
        self.home.update()
        self.levels.update()
        self.draw_time()

    def draw_time(self):
        if self.check_command_line("-timer"):
            surface = Font(None, 18).render(str(self.timer.get_remaining() / 1000),
                                            False, (0, 0, 0),
                                            (255, 255, 255))
            self.get_display_surface().blit(surface, (0, 0))
from os.path import join
from glob import glob

from pygame import Surface
from pygame.image import load

from lib.pgfw.pgfw.Sprite import Sprite

class Spanky(Sprite):

    def __init__(self, parent):
        Sprite.__init__(self, parent)
        self.load_configuration()
        self.load_from_path(self.get_resource(self.root), True, False)
        self.set_framesets()
        self.set_frameset("jump")

    def load_configuration(self):
        config = self.get_configuration("spanky")
        self.root = config["path"]
        self.jump_order = config["jump-order"]
        self.jump_framerate = config["jump-framerate"]
        self.wag_order = config["wag-order"]
        self.wag_framerate = config["wag-framerate"]
        self.walk_order = config["walk-order"]
        self.walk_framerate = config["walk-framerate"]

    def set_framesets(self):
        for verb in ("jump", "wag", "walk"):
            self.add_frameset(getattr(self, verb + "_order"),
                              getattr(self, verb + "_framerate"), verb)
from os.path import join
from random import randint, randrange, choice
from math import sin, cos, radians, ceil
from collections import deque

from pygame import Surface, Rect, PixelArray
from pygame.image import load
from pygame.mask import from_surface
from pygame.draw import line, aaline
from pygame.transform import rotate
from pygame.locals import *

from lib.pgfw.pgfw.Animation import Animation
from lib.pgfw.pgfw.Sprite import Sprite
from lib.pgfw.pgfw.GameChild import GameChild

class Siphon(GameChild):

    def __init__(self, parent):
        GameChild.__init__(self, parent)
        self.time_filter = self.get_game().time_filter
        self.color_index = 0
        self.load_configuration()
        self.set_roots()
        self.cancel()
        self.set_nodesets()
        self.set_score()
        self.set_badges()

    def load_configuration(self):
        self.badge_size = 60, 44
        self.stem_width = 30
        self.set_colors()

    def set_colors(self):
        components = self.get_configuration("siphon", "root-colors")
        colors = self.colors = []
        for ii in xrange(0, len(components), 6):
            colors.append((components[ii:ii + 3], components[ii + 3:ii + 6]))

    def set_roots(self):
        roots = self.roots = Roots(self, Roots.HORIZONTAL)
        roots.add_initial(self.stem_width)
        roots.init_surfaces(Rect(0, 0, self.stem_width, self.badge_size[1]))

    def cancel(self):
        self.contracting = False
        self.releasing = False
        self.release_elapsed = 0
        self.angle_deviation = 0

    def set_nodesets(self):
        interpolator = self.get_game().interpolator
        self.release_nodeset = interpolator.get_nodeset("release")

    def set_score(self):
        self.score = [[0, 0, 0] for _ in xrange(5)]

    def set_badges(self):
        self.badges = [Badge(self.roots, ii, self.badge_size) for ii in \
                       xrange(5)]
        self.set_badge()

    def set_badge(self):
        points = self.get_points()
        for ii, score in enumerate((2000, 5000, 10000, 16000)):
            if points < score:
                break
        self.roots.set_badge(self.badges[ii])

    def get_points(self):
        points = 0
        bases = 100, 200, 400, 800, 1600
        for ii, level in enumerate(self.score):
            base = bases[ii]
            for jj in xrange(max(level)):
                points += base * ((level[0] > jj) + (level[1] > jj) + \
                                  (level[2] > jj))
                base *= .9
        return int(points)

    def set_level(self, index=0):
        self.cancel()
        self.level = self.parent.levels[index]
        self.planet_rect = self.level.planet.location
        self.color_index = index
        self.roots.place()
        for badge in self.badges:
            badge.place()
        self.roots.gradient.set_tiles()
        self.roots.gradient.set_frames()
        self.draw_nodes()

    def draw_nodes(self):
        roots = self.roots
        roots.clear_root_surface()
        for node in roots.get_initial():
            y = self.get_initial_y(node.id)
            end = node.length, y
            self.draw_line((0, y), end)
            self.draw_children(node, end)

    def get_initial_y(self, node_id):
        modifier = -1 if node_id % 2 else 1
        return self.roots.rect.h / 2 + modifier * 10 * ((node_id + 1) / 2)

    def draw_line(self, start, end, alpha=180):
        line(self.roots.root_surface, self.get_current_colors()[0], start, end,
             3)
        aaline(self.roots.root_surface, (255, 255, 255), start, end, 1)

    def get_current_colors(self):
        return self.colors[self.color_index]

    def draw_children(self, node, start, depth=1):
        for child in node.children:
            end = self.get_offset_point(start, child.angle, child.length, True,
                                        depth)
            self.draw_line(start, end)
            self.draw_children(child, end, depth + 1)

    def get_offset_point(self, start, angle, length, deviate=False, depth=1):
        if deviate:
            angle -= self.angle_deviation * (angle - .8 ** depth * angle)
        return int(round(start[0] + cos(radians(angle)) * length)), \
               int(round(start[1] + sin(radians(angle)) * length))

    def add(self, level):
        offset = 70
        length = [40, 52, 66, 84, 100][level]
        for _ in xrange(25):
            parent = self.get_random_parent()
            for _ in xrange(3):
                angle = randint(parent.angle - offset, parent.angle + offset)
                if abs(angle) < 87 and (not parent.children or
                                        abs(parent.children[0].angle - angle) >
                                        45):
                    end = self.get_offset_point(self.get_end(parent), angle,
                                                length)
                    if self.check_end(end):
                        self.increase_score(level)
                        roots = self.roots
                        roots.add(length, angle, parent)
                        self.resize_roots_rect(end)
                        self.roots.init_surfaces(roots.rect)
                        self.draw_nodes()
                        return True

    def get_random_parent(self):
        node = self.roots[randrange(0, self.roots.initial_count)]
        while node.children:
            if len(node.children) == 1:
                if randint(0, 1):
                    break
            node = choice(node.children)
        return node

    def get_end(self, node):
        path = [node]
        while node.parent is not None:
            path.append(node.parent)
            node = node.parent
        x, y = node.length, self.get_initial_y(path.pop().id)
        while path:
            node = path.pop()
            x, y = self.get_offset_point((x, y), node.angle, node.length)
        return x, y

    def check_end(self, end):
        roots = self.roots.rect
        planet = self.planet_rect
        offset = end[0] + roots.left - planet.left, \
                 end[1] + roots.top - planet.top
        if planet.move(-planet.left, -planet.top).collidepoint(offset):
            return self.level.planet.frames[0].get_at(offset)[3] == 255

    def increase_score(self, level):
        self.score[level][randint(0, 2)] += 1
        self.set_badge()

    def resize_roots_rect(self, end):
        roots = self.roots.rect
        if end[0] > roots.w:
            roots.w = end[0]
        if end[1] < 0:
            roots.inflate_ip(0, -end[1] * 2)
        elif end[1] > roots.h:
            roots.inflate_ip(0, (end[1] - roots.h) * 2)

    def contract(self):
        self.contracting = True
        self.releasing = False
        self.charge_elapsed = 0
        self.roots.gradient.reverse()

    def release(self):
        if self.contracting:
            self.contracting = False
            self.releasing = True
            self.release_elapsed = 0
            self.roots.gradient.reverse()

    def update(self):
        self.update_angle_deviation()
        if self.contracting or self.releasing:
            self.draw_nodes()
        self.roots.update()

    def update_angle_deviation(self):
        if self.contracting:
            self.angle_deviation = self.level.food.charge
        elif self.releasing:
            self.release_elapsed += self.time_filter.get_last_frame_duration()
            if self.release_elapsed > self.release_nodeset.get_length():
                self.releasing = False
                self.angle_deviation = 0
            else:
                self.angle_deviation = self.release_nodeset.get_y(
                    self.release_elapsed) * self.level.food.submitted_charge


class Roots(GameChild, list):

    HORIZONTAL, VERTICAL = range(2)

    def __init__(self, parent, orientation):
        GameChild.__init__(self, parent)
        self.display_surface = self.get_display_surface()
        self.orientation = orientation
        self.gradient = Gradient(self, 200)

    def add(self, length, angle, parent=None):
        self.append(Node(len(self), length, angle, parent))
        if parent is not None:
           parent.add_child(self[-1])

    def add_initial(self, length):
        count = self.initial_count = 5
        for ii in xrange(count):
            self.add(length, 0)

    def get_initial(self):
        return self[:self.initial_count]

    def init_surfaces(self, rect):
        surface = self.surface = Surface(rect.size)
        surface.set_colorkey((0, 0, 0))
        self.root_surface = Surface(rect.size)
        self.rect = rect
        self.gradient.set_frames()

    def set_badge(self, badge):
        self.badge = badge

    def clear_root_surface(self):
        self.root_surface.fill((0, 0, 0))

    def place(self):
        base = self.parent.level.planet.location
        self.rect.midleft = base.left - self.parent.stem_width + 2, \
                            base.centery

    def update(self):
        self.badge.update()
        self.gradient.update()
        self.surface.blit(self.root_surface, (0, 0), None, BLEND_MIN)
        self.display_surface.blit(self.surface, self.rect)


class Node:

    def __init__(self, id, length, angle, parent=None):
        self.id, self.length, self.angle, self.parent = id, length, angle, \
                                                        parent
        self.children = []

    def add_child(self, child):
        self.children.append(child)


class Gradient(Sprite):

    def __init__(self, parent, framerate):
        Sprite.__init__(self, parent, framerate)
        self.set_tiles()

    def set_tiles(self):
        tile_rect = Rect(0, 0, 16, 16)
        colors = self.get_colors()
        tiles = self.tiles = []
        segment_count = len(colors)
        segment_width = int(ceil(float(tile_rect.w) / segment_count))
        for _ in xrange(segment_count):
            frame = Surface(tile_rect.size)
            x = 0
            for color in colors:
                frame.fill(color, (x, 0, segment_width, tile_rect.h))
                x += segment_width
            colors.rotate()
            if self.parent.orientation == Roots.VERTICAL:
                frame = rotate(frame, 90)
            tiles.append(frame)

    def get_colors(self):
        count = 8
        base_color = Color(*self.parent.parent.get_current_colors()[1])
        bh, bs, bl, ba = base_color.hsla
        bs_step = (100 - bs) / float(count - 1)
        bl_step = (100 - bl) / float(count - 1)
        colors = deque()
        for _ in xrange(count):
            color = Color(0, 0, 0)
            color.hsla = map(int, (bh, min(100, bs), min(100, bl), ba))
            colors.append(color)
            bs += bs_step
            bl += bl_step
        return colors

    def set_frames(self):
        self.display_surface = self.parent.surface
        index = 0 if not self.frames else \
                self.get_current_frameset().get_current_id()
        self.clear_frames()
        rect = self.parent.rect
        surface = Surface(rect.size)
        if self.parent.orientation == Roots.VERTICAL:
            surface = rotate(surface, 90)
            rect = surface.get_rect()
        for tile in self.tiles:
            frame = surface.copy()
            for x in xrange(0, rect.w, tile.get_width()):
                for y in xrange(0, rect.h, tile.get_height()):
                    frame.blit(tile, (x, y))
            self.add_frame(frame)
        for _ in xrange(index):
            self.shift_frame()


class Badge(Animation):

    def __init__(self, parent, level, size):
        Animation.__init__(self, parent)
        self.level = level
        self.rect = Rect((0, 0), size)
        self.display_surface = self.get_display_surface()
        self.background_color = Color(255, 222, 222)
        self.set_background()
        self.set_guns()
        self.register(self.shift)
        self.play(self.shift, 120)

    def set_background(self):
        width = 1
        rect = self.rect
        surface = Surface(rect.size)
        colors = (0, 0, 0), (255, 255, 255)
        for ii, x in enumerate(xrange(0, rect.w, width)):
            surface.fill(colors[ii % 2], (x, 0, width, rect.h))
        self.background = surface
        self.surface = Surface(surface.get_size())

    def set_guns(self):
        width = 0
        margin = 5
        images = []
        for guns in self.parent.parent.parent.gun_library:
            image = guns[self.level].frames[0].copy()
            mask = from_surface(image)
            pixels = PixelArray(image)
            for x in xrange(len(pixels)):
                for y in xrange(len(pixels[0])):
                    if mask.get_at((x, y)):
                        pixels[x][y] = (0, 0, 0)
                    else:
                        pixels[x][y] = (255, 255, 255)
            del pixels
            width += image.get_width() + margin
            images.append(image)
        self.img = images[0]
        surface = Surface((width, self.rect.h))
        surface.fill((255, 255, 255))
        x = 0
        for image in images:
            rect = image.get_rect()
            rect.midleft = x, self.rect.h / 2
            if self.level == 0:
                rect.centery += 3
            surface.blit(image, rect)
            x += image.get_width() + margin
        self.gun_surface = surface
        self.gun_rect = surface.get_rect()
        self.gun_rect.right = self.rect.w

    def shift(self):
        rect = self.gun_rect
        rect.move_ip(2, 0)
        if rect.left >= rect.w:
            rect.left -= rect.w

    def place(self):
        if self.parent.orientation == Roots.HORIZONTAL:
            self.rect.midright = self.parent.rect.midleft
        else:
            self.rect.midtop = self.parent.rect.midbottom

    def update(self):
        Animation.update(self)
        gr = self.gun_rect
        self.surface.fill(self.background_color)
        self.background.set_colorkey((255, 255, 255))
        self.surface.blit(self.background, (0, 0))
        self.surface.blit(self.gun_surface, gr, None, BLEND_MIN)
        self.surface.blit(self.gun_surface, gr.move(-gr.w, 0), None, BLEND_MIN)
        self.display_surface.blit(self.surface, self.rect)
        h, s, v, a = self.background_color.hsva
        h += 2
        if h > 360:
            h -= 360
        self.background_color.hsva = h, s, v, a
216.73.216.212
216.73.216.212
216.73.216.212
 
January 23, 2021

I wanted to document this chat-controlled robot I made for Babycastles' LOLCAM📸 that accepts a predefined set of commands like a character in an RPG party 〰 commands like walk, spin, bash, drill. It can also understand donut, worm, ring, wheels, and more. The signal for each command is transmitted as a 24-bit value over infrared using two Arduinos, one with an infrared LED, and the other with an infrared receiver. I built the transmitter circuit, and the receiver was built into the board that came with the mBot robot kit. The infrared library IRLib2 was used to transmit and receive the data as a 24-bit value.


fig. 1.1: the LEDs don't have much to do with this post!

I wanted to control the robot the way the infrared remote that came with the mBot controlled it, but the difference would be that since we would be getting input from the computer, it would be like having a remote with an unlimited amount of buttons. The way the remote works is each button press sends a 24-bit value to the robot over infrared. Inspired by Game Boy Advance registers and tracker commands, I started thinking that if we packed multiple parameters into the 24 bits, it would allow a custom move to be sent each time, so I wrote transmitter and receiver code to process commands that looked like this:

bit
name
description
00
time
multiply by 64 to get duration of command in ms
01
02
03
04
left
multiply by 16 to get left motor power
05
06
07
08
right
multiply by 16 to get right motor power
09
10
11
12
left sign
0 = left wheel backward, 1 = left wheel forward
13
right sign
0 = right wheel forward, 1 = right wheel backward
14
robot id
0 = send to player one, 1 = send to player two
15
flip
negate motor signs when repeating command
16
repeats
number of times to repeat command
17
18
19
delay
multiply by 128 to get time between repeats in ms
20
21
22
23
swap
swap the motor power values on repeat
fig 1.2: tightly stuffed bits

The first command I was able to send with this method that seemed interesting was one that made the mBot do a wheelie.

$ ./send_command.py 15 12 15 1 0 0 0 7 0 1
sending 0xff871fcf...


fig 1.3: sick wheels

A side effect of sending the signal this way is any button on any infrared remote will cause the robot to do something. The star command was actually reverse engineered from looking at the code a random remote button sent. For the robot's debut, it ended up with 15 preset commands (that number is in stonks 📈). I posted a highlights video on social media of how the chat controls turned out.

This idea was inspired by a remote frog tank LED project I made for Ribbit's Frog World which had a similar concept: press a button, and in a remote location where 🐸 and 🐠 live, an LED would turn on.


fig 2.1: saying hi to froggo remotely using an LED

😇 The transmitter and receiver Arduino programs are available to be copied and modified 😇